Publications

Publications are listed in reversed chronological order.

2025

  1. Growing with Experience: Growing Neural Networks in Deep Reinforcement Learning
    Lukas Fehring, Marius Lindauer, and Theresa Eimer
    In Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM), Jun 2025
  2. Task Scheduling & Forgetting in Multi-Task Reinforcement Learning
    Marc Speckmann, and Theresa Eimer
    In Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM), Jun 2025
  3. Performance Prediction In Reinforcement Learning: The Bad And The Ugly
    Julian Dierkes, Theresa EimerMarius Lindauer, and Holger Hoos
    In 18th European Workshop on Reinforcement Learning (EWRL), Sep 2025
  4. Mighty: A Comprehensive Tool for studying Generalization, Meta-RL and AutoRL
    In 18th European Workshop on Reinforcement Learning (EWRL), Sep 2025
  5. Revisiting Learning Rate Control
    Micha Henheik, Theresa Eimer, and Marius Lindauer
    In Proceedings of the Fourth International Conference on Automated Machine Learning (AutoML’25), Sep 2025

2024

  1. AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks
    Alexander Tornede, Difan Deng, Theresa Eimer, Joseph Giovanelli, Aditya Mohan, Tim Ruhkopf, Sarah Segel, Daphne Theodorakopoulos, Tanja Tornede, Henning Wachsmuth, and Marius Lindauer
    Transactions on Machine Learning Research, Jan 2024
  2. ARLBench: Flexible and Efficient Benchmarking for Hyperparameter Optimization in Reinforcement Learning
    Jannis Becktepe, Julian Dierkes, Carolin BenjaminsAditya Mohan, David Salinas, Raghu RajanFrank Hutter, Holger H. Hoos, Marius Lindauer, and Theresa Eimer
    In 17th European Workshop on Reinforcement Learning (EWRL), Sep 2024

2023

  1. Hyperparameters in Reinforcement Learning and How To Tune Them
    Theresa EimerMarius Lindauer, and Roberta Raileanu
    Proceedings of the Fortieth International Conference on Machine Learning, Jul 2023
  2. Contextualize Me - The Case for Context in Reinforcement Learning
    Transactions on Machine Learning Research, Jul 2023

2022

  1. Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
    Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer, Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, Frank Hutter, and Marius Lindauer
    Journal of Artificial Intelligence Research (JAIR), Jul 2022
  2. Automated Dynamic Algorithm Configuration
    Steven AdriaensenAndré Biedenkapp, Gresa Shala, Noor Awad, Theresa EimerMarius Lindauer, and Frank Hutter
    Journal of Artificial Intelligence Research, Jul 2022

2021

  1. DACBench: A Benchmark Library for Dynamic Algorithm Configuration
    Theresa EimerAndré Biedenkapp, Maximilian Reimer, Steven AdriaensenFrank Hutter, and Marius Lindauer
    In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI’21), Aug 2021
  2. Self-Paced Context Evaluation for Contextual Reinforcement Learning
    In Proceedings of the Thirty-eighth International Conference on Machine Learning, Jul 2021
  3. Automatic Risk Adaption in Distributional Reinforcement Learning
    In Workshop on Reinforcement Learning for Real Life (RL4RealLife@ICML’21), Jul 2021
  4. Hyperparameters in Contextual RL are Highly Situational
    Theresa EimerCarolin Benjamins, and Marius Lindauer
    In Ecological Theory of RL Workshop NeurIPS, Dez 2021

2020

  1. Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework
    André Biedenkapp, H. Furkan Bozkurt, Theresa EimerFrank Hutter, and Marius Lindauer
    In Proceedings of the European Conference on Artificial Intelligence (ECAI), Jun 2020