
Self-Paced Context Evaluation for Contextual Reinforcement Learning

Theresa Eimer 1 André Biedenkapp 2 Frank Hutter 2 3 Marius Lindauer 1

Abstract
Reinforcement learning (RL) has made a lot of
advances for solving a single problem in a given
environment; but learning policies that generalize
to unseen variations of a problem remains chal-
lenging. To improve sample efficiency for learn-
ing on such instances of a problem domain, we
present Self-Paced Context Evaluation (SPACE).
Based on self-paced learning, SPACE automati-
cally generates instance curricula online with lit-
tle computational overhead. To this end, SPACE
leverages information contained in state values
during training to accelerate and improve training
performance as well as generalization capabilities
to new instances from the same problem domain.
Nevertheless, SPACE is independent of the prob-
lem domain at hand and can be applied on top of
any RL agent with state-value function approxi-
mation. We demonstrate SPACE’s ability to speed
up learning of different value-based RL agents on
two environments, showing better generalization
capabilities and up to 10× faster learning com-
pared to naive approaches such as round robin or
SPDRL, as the closest state-of-the-art approach.

1. Introduction
Although Reinforcement Learning (RL) has performed im-
pressively in settings like continuous control (Lillicrap et al.,
2016), robotics (OpenAI et al., 2019) and game playing (Sil-
ver et al., 2016; Vinyals et al., 2019), their applicability is
often very limited. RL training on a given task takes a lot of
training samples, but the skills acquired do not necessarily
transfer to similar tasks as they do for humans. An agent
that is able to generalize across variations of a task, however,
can be applied more flexibly and has a lower chance of suc-
ceeding when presented with unseen inputs. Therefore im-

1Information Processing Institute (tnt), Leibniz University
Hannover, Germany 2Department of Computer Science, Univer-
sity of Freiburg, Germany 3Bosch Center for Artificial Intelli-
gence, Renningen, Germany. Correspondence to: Theresa Eimer
<eimer@tnt.uni-hannover.de>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1: Example instances of the contextual PointMass
environment. The agent’s yellow starting point, the green
goal and floor friction (indicated by shading) are part of the
context and vary between instances.

proving generalization means improving sample efficiency
and robustness to unknown situations. We view these as
important qualities for real-world RL applications.

Curriculum learning (Bengio et al., 2009) aims to bridge
the gap between agent and human transfer capabilities by
training an agent the same way a human would learn: trans-
ferring experience from easy to hard variations of the same
task. It has been shown that generating such instances with
increasing difficulty to form a training curriculum can im-
prove training as well generalization performance (Dendor-
fer et al., 2020; Matiisen et al., 2017; Zhang et al., 2020).
As information about instance difficulty is often not read-
ily available, many approaches utilize the agent’s progress
markers, such as evaluation performance, confidence in its
policy or its value function to minimize the need for domain
knowledge (Wang et al., 2019; Klink et al., 2020). Because
the progression is dictated by the agent’s learning progress,
this is called Self-Paced Learning (Kumar et al., 2010).

Instances in a curriculum can vary from the core task in
different aspects, such as varying goals or movement speeds
(see Fig. 1). While only selecting different goals states as
instances is common for curriculum learning methods (Den-
dorfer et al., 2020; Zhang et al., 2020), changing transition
dynamics are important considerations regarding the robust-
ness of a policy. A dynamic change in robotics could for
example be caused by a broken joint that the agent now has
to adapt to. To allow these changes in the transition dynam-
ics, in addition to goal changes in the instances, we consider
contextual RL instead.

Our contributions are as follows:

1. We propose SPACE, a new self-paced learning algo-
rithm, to automatically generate instance curricula in a

ar
X

iv
:2

10
6.

05
11

0v
1

 [
cs

.L
G

]
 9

 J
un

 2
02

1

SPaCE

general contextual RL setting, without any knowledge
about instance difficulty being required and with access
to only a limited set of instances (see Section 4).

2. We show the convergence behavior of SPACE to be at
least as good as round robin (see Section 4.2).

3. We demonstrate that SPACE is capable of outperform-
ing a round robin baseline (Speck et al., 2020) as well
as similar self-paced methods (see Section 5).

2. Related Work
There are different approaches to increase generalization
capability in RL. Their goals and scopes differ substantially,
however. MAML (Finn et al., 2017) and related meta-RL
methods pre-train an agent such that specializing on one of
the training tasks is then very efficient. These take different
approaches of aggregating and propagating the gradients in
training and are complementary approaches to SPACE.

Domain randomization (DR; Tobin et al., 2017) on the other
hand varies the task space. In essence, DR creates new
instances of tasks in order to force the agent to adapt to alter-
ations in its observations and policy. Other examples such as
POET (Wang et al., 2019) and ADR (OpenAI et al., 2019)
sample instances at random but order them by leveraging
knowledge about the environment. Without prior knowl-
edge of the target distribution, however, making appropriate
changes is hard, resulting in either too little variation to fa-
cilitate generalization or deviating so much that the problem
becomes too hard to learn. Other approaches utilize human
expert knowledge to facilitate generalization performance,
such as human-in-the-loop RL (Thomaz & Breazeal, 2006)
or imitation learning (Hussein et al., 2017).

Curriculum learning (Bengio et al., 2009) uses expert knowl-
edge to generate an ordering of training instances in such
a way that knowledge can be transferred from hard to easy
instances. There are different approaches for automatically
generating such instance curricula, including learning how
to generate training instances (Dendorfer et al., 2020; Such
et al., 2020) similar to a teacher (Matiisen et al., 2017;
Turchetta et al., 2020) or leveraging self-play as a form of
curriculum generation (Sukhbaatar et al., 2018; da Silva
et al., 2019). In most of these cases, some knowledge of
the instance space is required in order to either define a
measure of instance difficulty or how to generate new in-
stances. While instance generation requires only little prior
knowledge, a separate agent will need to learn to gener-
ate instances of appropriate difficulty, which increases the
training overhead significantly.

Value Disagreement based Sampling (VDS; Zhang et al.,
2020) on the other hand builds curricula for goal-directed
RL. VDS uses the disagreement between different agents

trained on the same instances to measure which training
instance should be trained on next. Like its building block
HER (Andrychowicz et al., 2017), VDS is only compatible
with goal-directed off-policy RL.

One approach to order the training instances is explicitly
using an agent’s performance as an ordering criterion in-
stead, called Self-Paced Learning. This can be done using
the agent’s value function as a substitute for actual episode
evaluations. SPDRL (Klink et al., 2020) uses this idea to
generate new instances uniquely suited to the agent’s cur-
rent training progress in order to progress towards specific
hard instances. While this eliminates the need for a teacher,
researchers instead need to know a priori which instances
are considered the hard target instances and where the agent
should start training in relation to them.

3. Contextual Reinforcement Learning
Before we describe SPACE, we discuss how we can extend
the typical RL formulation to allow for the notion of in-
stances. RL problems are generally modeled as Markov De-
cision Processes (MDPs), i.e., a 4-tupleM := (S,A, T,R)
consisting of a state space S, a set of actions A, a tran-
sition function T : S × A → S and a reward function
R : S × A → R. This abstraction however, only allows
to model a specific instantiation of a problem and does not
allow to deviate from a single fixed instance.

An instance i ∈ I in a set of instances I could, e.g., deter-
mine a different goal position in a maze problem or different
gravity conditions (i.e., moon instead of earth) for a naviga-
tion task. Information about the instance at hand is called
its context ci. This context can either directly encode infor-
mation about the instance, e.g., the true goal coordinates, or
the kind of robot that should be controlled.

In order to make use of context in our problem description,
we consider contextual MDPs (cMDP; Hallak et al., 2015;
Modi et al., 2018; Biedenkapp et al., 2020). A contextual
MDPMI is a collection of MDPsMI := {Mi}i∈I with
Mi := (S,A, Ti, Ri). As the underlying problem stays the
same, we assume the possible state and action spaces are
consistent across all instances; however, the transition and
reward functions are unique to each instance.1

An optimal policy π∗ for such a cMDP optimizes the ex-
pected return over all instances I with discount factor γ:

π∗ ∈ arg max
π∈Π

1

|I|
∑
i∈I

T∑
t

γtRi(st, π(st)) (1)

As the reward depends on the given instance i, an agent
solving a cMDP can leverage the context ci along with

1In goal-directed RL, instances can also only vary the reward
function and keep dynamics constant.

SPaCE

the current state st ∈ S in order to differentiate between
instances.

4. Self-Paced Context Evaluation
In order to generate a curriculum without any prior knowl-
edge of the target domain, our Self-Paced Context Eval-
uation (SPACE) takes advantage of the information con-
tained in an agent’s state value predictions. By modelling
V π(st, ci), the agent learns to predict the expected reward
from state st on instance i when following the current pol-
icy π. Therefore, we propose V π(s0, ci) as an estimate of
the total expected reward given a starting state s0.2

Definition 1. The performance improvement capacity (PIC)
of an instance is the difference in value estimation between
point t and t− 1, that is:

dt(i) = V πt (s0, ci)− V πt−1(s0, ci). (2)

The intuition is, if the instance evaluation changes by a large
amount, the agent has learned a lot about this instance in
the last iteration and can potentially learn even more on it.
Instances that are too easy or too hard will yield relatively
small or no improvements. SPACE prefers instances on
which it expects to make most learning progress. As most
state-of-the-art RL algorithms use a value-based critic, each
instance’s PIC is easily computed during training.

Algorithm 1 summarizes the idea of SPACE. After some
initialization in Lines 1-3, SPACE performs an update step
for the current policy π and the value function V π based on
roll-outs on the current instance set Icurr. In principle, any
RL algorithm with a value-function estimate can be used,
such as Q-learning or policy search based on an actor-critic.
In Lines 6-7, SPACE updates the average instance evalua-
tion and the difference to the last iteration; note that this only
considers the current set of instances Icurr. In Lines 8-9,
SPACE first checks whether the value function V πt changed
∆V πt by a factor η < 1.0 compared to the value function be-
fore the update. If the update led to an insignificant change
of the value function, SPACE assumes that the learning suf-
ficiently converged and we can add κ new instances to Icurr.
Starting in Line 10, SPACE determines which instances in
I should be included in Icurr. For each instance, SPACE
first computes how much the value function changed, dt(i).
The instances with the highest PIC regarding V π are chosen
as Icurr (Lines 12-13), assuming that it is easy to make
progress on these instances right now. Note, we evaluate the
influence of the η and κ hyperparameters on the learning
behaviour of SPACE in our experiments.

2For simplicity’s sake, we assume that an environment has a
single starting state s0 and we do not integrate over all possible
starting states.

Algorithm 1: SPACE curriculum generation
Data: policy π, value function V , Instance set I,

threshold η, step size κ, #iterations T
1 S, t := 0
2 V0 := 0
3 Icurr := {i} with i randomly sampled from I
4 for t = 1...T do
5 π, V πt := update(π, V πt−1, Icurr)
6 V πt := 1

|Icurr|
∑
i∈Icurr |V

π
t (s0, ci)|

7 if V πt ∈ [(1− η)V πt−1, (1 + η)V πt−1] then
// Increase set size

8 S := S + κ

// Choose next instance set
9 forall i ∈ I do

10 dt(i) := V πt (s0, ci)− V πt−1(s0, ci)

11 Icurr := S instances with highest dt(i)
12 t := t+ 1

Figure 2: CartPole instances: short (s), medium (m) and
long (l) balancing pole.

4.1. Exemplary Application of SPACE

As a motivating example, we consider the CartPole envi-
ronment (Brockman et al., 2016) with three different pole
lengths, see Figure 2. We use a small DQN (hyperparam-
eters given in Appendix B) for this example with the pole
length being given as an additional state feature. Although
CartPole is generally considered as easy to solve, using
poles of different length causes the DQN using a round
robin curriculum to be unable to improve over time (see
Figure 3). SPACE on the other hand is able to generate
curricula that allow the DQN to learn how the cart has to be
moved for the different poles and thus improve considerably
to a mean performance of around 150 per episode compared
to round robin’s 25.

In Figure 4 we can see the main difference between the
two methods. While the round robin agent trains on all
three different variations one episode each, SPACE only
chooses to train on the cart with the long pole twice before
episode 40. Instead, the focus is on a single instance at a
time, using either the short or medium pole and changing
not every episode but trains on an instance for at least three
consecutive episodes. This shows that the value function
can provide guidance as to instance similarity, as we would
expect that the short and medium sticks behave in a similar
way, as well as difficulty, the long pole being the hardest to

SPaCE

Figure 3: Performance (± std.) comparison of SPACE and
default instance ordering on CartPole over 5 seeds each.

Figure 4: One exemplary run of SPACE (top) and round
robin (bottom) curricula on CartPole.

control of the three. While the changes in the value function
may not provide a completely stable curriculum, training on
one instance for a flexible amount of episodes instead of one
episode already has a big impact on overall performance.
Furthermore, comparing the curriculum to the performance
curve, focusing on only one instance at a time already leads
to the agent performing considerably better on all of them.
This validates the idea that there are underlying dynamics
common to all three pole lengths which are important to
learn and then refine according to the instance dynamics.

4.2. Convergence of SPACE

To discuss under which conditions SPACE will converge,
we consider two cases.
Theorem 1. Given a set of instances I that are sufficiently
distinguishable by their context ci as well as an instance
of SPACE with η > 0, κ ≥ 1 and an agent with value
function Vt. If the value function estimation V πt converges
in the limit to some value function V on each instance
(∀i ∈ I.∀s ∈ S : limt→∞ V πt (s, ci) = V (s, ci)) and glob-
ally (limt→∞ V πt (s) = V (s)), SPACE will eventually in-
clude all instances in the curriculum.

Proof. Since for all i ∈ I:

lim
t→∞

V πt (s0, ci) = V (s0, ci) (3)

and therefore it follows that:

lim
t→∞

∆V πt−1 = ||V πt (s0, ci)| − |V πt (s0, ci)|| → 0 (4)

Thus SPACE is guaranteed to include at least one other
instance i′ in the new curriculum Icurr at some point t.
Now we assume that we are given any I ′ ⊆ I with size
n < |I|. As ∀i ∈ I.∀s ∈ S : limt→∞ V πt (s, ci) = V (s, ci)
and Equation 3, convergence of V πt on the subset I ′ follows:

∀i ∈ I ′ : lim
t→∞

V π(s0, ci) = V (s0, ci) (5)

Therefore, as in the single instance case:

lim
t→∞

∆V πt → 0 (6)

and a new instance is added.

As the curriculum is guaranteed to be extended for any in-
stance set of size n = 1 and n ≤ |I|, SPACE will eventually
construct a curriculum using the whole instance set.

Corollary 1. If SPACE covers all instances at some time
point, it will be only slower than round robin by a constant
factor in the worst case.

Proof. Assume κ = 1 and that the learning agent requires
O(K) steps to converge on a single instance.

If the agent is not able to transfer any of its gained knowl-
edge between any of the tasks, SPACE will require to train
an agent O(k) steps before growing the curriculum, where
k ≤ K, depending on η. SPACE will thus requireO(|I| ·k)
steps to include all |I| instances in the curriculum. At this
point, SPACE behaves as a round robin schedule does, i.e.,
iterating over each instance while training the agent. There-
fore, even if the construction of a meaningful curriculum
should have failed, SPACE can recover by falling back to a
round robin scheme after O(|I| · k) steps.

Corollary 2. If the value function estimation converges to
the true value function V ∗, SPACE will also converge to the
optimal policy.

Assume the worst case in which the value function estimate
does not converge, but either oscillates or even diverges.
This could happen if SPACE jumps between two disjoint
instance sets I1 and I2 and the progress on I1 is lost by
switching to I2 and vice versa.3 Whenever we detect that
learning is not progressing further and convergence is not
achieved (i.e., ∆V πt 6= 0 and Icurr 6= I), SPACE could
simply increase η. As this hyperparameter controls how
strict the convergence criterion is, increasing the value will
allow for new instances to be added to the training set even
though the original convergence criterion has not been met.
The least value to which η should be set to guarantee an
increase of instances is ∆V πt +ε

V πt−1
for any ε > 0 to eventually

train on all instances.
3Note: Though theoretically possible, we have never observed

this problem in practice.

SPaCE

Theorem 2. If the value function estimate is not guaranteed
to converge (e.g., in deep reinforcement learning), SPACE
can still recover a round robin scheme by increasing the
threshold η if needed.

Proof. If at any point t, ∆V πt 6= 0 and Icurr 6= I , we apply
the method described above and set η =

∆V πt +ε
V πt−1

. Then
the condition to increase the instance set size is ∆V πt <

η · V πt−1 → ∆V πt <
∆V πt +ε
V πt−1

· V πt−1 → ∆V πt < ∆V πt + ε.
Thus the instance set size is guaranteed to be increased.
As this is true for any point in training, SPACE can still
consider all instances at some point t∗ and thus perform as
well as round robin from t∗ onward.

5. Experiments
In this section we empirically evaluate SPACE on two dif-
ferent environments. The code for all experiments is avail-
able at https://github.com/automl/SPaCE. We first describe
the experimental setup before comparing SPACE against a
round robin (RR) training scheme and SPDRL (Klink et al.,
2020) as a state-of-the-art self-paced RL baseline. Finally
we evaluate the influence of SPACE’s own hyperparameters
and limitations.

5.1. Setup

We evaluated SPACE in settings that readily allow for con-
text information to encode different instances, namely the
Ant locomotion environment (Coumans & Bai, 2020), the
gym-maze environment (Chan, 2019) and the BallCatching
and contextual PointMass environments as used by Klink
et al. (2020).

The task in Ant is to control a four legged ant robot towards
a goal on a flat 2D surface as quick as possible. The context
is given by the x- and y-coordinates of the goal. Goals that
are close to the starting position are easier to reach and thus
we expect them to be easier to learn and their policies to
transfer to more difficult instances. Additionally, the context
indicates if no or up to one of the four legs of the ant robot
is immobilized, similar to (Seo et al., 2020). We uniformly
sampled 200 instances which we split in equal sized, disjoint
training and test sets (see Appendix A). The context of the
maze environment (Chan, 2019), in which the task is to
find the goal state, is given as the flattened 5x5 layout of
the current instance. 100 training and test instances each
were sampled using the given maze generator. The agent’s
goal in BallCatching is to direct a robot to catch a ball. The
ball’s distance from the robot as well as it goal position are
given as context information. Training and test sets were
each 100 instances large and uniformly sampled between
our context bounds. In the PointMass environment (see
Figure 1), an agent maneuvers a point mass through a goal

in a two-dimensional space. The goal position, the width
as well as the friction coefficient of the ground are given as
context. We sampled 100 instances for training and testing,
each for two different distributions. The first distribution is
chosen to cover the space of possible instances, whereas the
second distribution follows that of Klink et al. (2020) and
focuses on an area around a particularly difficult instance
(see Appendix A).

To be consistent and fair with respect to prior work, we
trained a PPO agent (Schulman et al., 2017) for Ant and
a TRPO agent for PointMass (Schulman et al., 2015) and
base our curriculum generation on their value-based actors.
For easier readability, all plots are smoothed over 10 steps.
In order to monitor generalization progress over time, we
evaluated the agent on all instances in the training and test
set after each complete run through the training set. As
the results on training and test sets were very similar, we
only report the test performance. In all experiments we
evaluated our agents over 10 random seeds. For hardware
specifications and hyperparameters, please see Appendix B.

5.2. Baselines

In our experiments, we use three different baselines to com-
pare SPACE’s performance to.

Round Robin (RR) To be sure SPACE outperforms in-
stances without an intentional ordering, we compare against
round robin as a common default instance ordering. This
means that the training instances are ordered in an arbitrary
way and we simply iterate over them, playing one episode
per instance. As the instance sets we use are generated ran-
domly, this ordering is chosen at random as well.

SPDRL SPDRL (Klink et al., 2020) is a state-of-the-art
self-paced learning method for contextual RL. This is no-
table as most curriculum learning methods are explicitly
designed for goal-directed RL, which makes them unsuit-
able in our setting. Counter to SPACE and RR, SPDRL
makes use of an instance distribution to continually sample
new instances of a specific difficulty level. SPDRL uses
this ability to generate new instances to focus on particu-
larly difficult instances, while largely ignoring the remain-
ing instance space. To this end, SPDRL requires additional
domain knowledge, besides the context information, to de-
termine which instances SPDRL should focus on. Therefore
we provide SPDRL with the distribution of our training and
test set to focus the learning on its center.

cSPACE With SPACE we opted for taking an agent’s
knowledge about the expected reward, i.e. value function,
into account to determine the similarity and difficulty of
instances. However, as instances can be represented by their
context, their similarity could also be quantified directly

https://github.com/automl/SPaCE

SPaCE

Figure 5: Mean reward (± standard deviation) per episode over 10 runs on Ant (left) and BallCatching (right).

through their similarity in the context space. This form of
similarity quantification is common in fields making use
of techniques such as algorithm selection (Rice, 1976) and
meta-learning (Brazdil et al., 2008). Such curricula order
instances according to their context similarities. A success-
ful application of this approach can be seen in Reverse
Curriculum Generation for Reinforcement Learning (Flo-
rensa et al., 2017) where robot arm starting positions were
ordered into a curriculum according to their similarity. In
other words, instead of using an agent’s performance evalua-
tions as a basis for the curriculum generation, instances with
contexts that are closest to the current curriculum context
are added. SPACE’s instance ordering criterion can easily
be changed to compare context space distance instead of
evaluations, yielding a variation we call context SPACE
(cSPACE). More precisely, we replaced d as our instance
selection criterion (see Algorithm 1 Line 10) with the Eu-
clidean distance to the current instance set Icurr. In such
cases, cSPACE can suffer from the same problems as un-
supervised learning. A priori it is not clear how to scale
and weight the different context features without having any
signal how the features will affect the difficulty of instances
and how good the resulting curriculum will be. In contrast
to SPACE, we deem this a potential challenge in applying
cSPACE. For this reason, we recommend SPACE as the
default approach whenever state evaluations are available.

5.3. Does the Instance Order Matter?

We first compare SPACE to a baseline round robin (RR)
agent on the Ant and BallCatching environments, to deter-
mine if SPACE can find a curriculum that outperforms a
random ordering. In Figure 5, both agents reach the same
final performance in each environment, but the agent trained
via SPACE learns considerably faster. It only requires 103

steps to reach a reward of around 11 in Ant whereas RR
requires roughly 10× as many steps to train an agent to
reach the same reward. The results for BallCatching are
similar, with SPACE again being faster to reach the final
performance a factor of at least 10. We further compare both
methods on the PointMass environment when training on

Figure 6: Mean reward per episode on a test set of uniformly
sampled instances for PointMass.

an instance set that was uniformly sampled from the space
of possible instances (see Figure 6).

Here, the agent trained with SPACE is only roughly twice
as fast, but it substantially outperforms round robin in terms
of final performance. As the RR baseline does not care
about the order in which instances are presented to the
agent, we conclude that a more structured learning approach
is needed. From SPACE’s performance we can conclude
that a curriculum, learned in a self-paced fashion can help
improve both training performance and generalization. The
experiments in the following sections further confirm this
finding.

5.4. Comparing SPACE and SPDRL

We further compared SPACE to SPDRL (Klink et al., 2020)
on the PointMass environment in order to demonstrate the
difference between SPACE and an other self-paced learning
method. We used the same implementation and hyperpa-
rameters as in (Klink et al., 2020) for SPDRL. The test
performance of the agents can be seen in Figure 6.

As SPDRL was developed to train an agent to solve spe-
cific hard instances in the PointMass environment, it clearly
falls short when it comes to covering the whole instance
space. The agent trained via SPDRL learns much slower and
achieves a worse final performance than an agent trained via

SPaCE

Figure 7: SPACE and RR of a set of mazes over 10 runs (±
standard deviation)

RR. Perhaps unsurprisingly, this shows that targeting learn-
ing on hard instances does not imply the same agent can
achieve good generalization performance on all instances.

5.5. How Well does SPACE Handle Complex Contexts?

While our benchmarks above are common meta-RL problem
settings with different complexities, their contexts are given
in a rather simple form, i.e., a short context vector directly
describes the goal and environment dynamics. The agent
can therefore make a direct connection between the changes
between instances and the different context descriptions.
This may not always be the case with context possibly being
given within the observation, e.g., as part of an image.

In order to confirm that such a context description still en-
ables SPACE to select the appropriate next instance, we use
a set of 100 5x5 mazes (Chan, 2019) for our agent to gen-
eralize over. The observation is the agent’s current position
while the context is given by the flattened maze layout.

This context is much more complex than the previously used
ones by having a structure that has been flattened and its
components do not directly correlate to an increase in diffi-
culty. Furthermore, many of the components of the context
may not change from instance to instance even though the
layout, and therefore the required policy, will.

Figure 7 shows that while the context information for this
task is much more complex than previously seen, SPACE
still outperforms the round robin agent in a similar way
than it does to for Ant and BallCatching. The round robin
agent needs several hundred episodes to solve all mazes
while SPACE is able to generalize from just 10 episodes.
While the context complexity increases in this case, the
value function is still able to differentiate between them
enough to allow a distinction between different instances.
Therefore we expect that the representation of the context is
not a major concern for the performance of SPACE.

Figure 8: Mean reward on contextual PointMass with addi-
tional cSPACE results.

5.6. Can SPACE Be Applied Without a Value
Function?

The PointMass environment has three different context fea-
tures for which we can easily use the context space distance
to construct a curriculum. SPACE and cSPACE perform
similarly on PointMass (Figure 8) in terms of learning speed
and overall performance, both reaching the same perfor-
mance at the same speed, with SPACE learning faster on
average between 104 and 105. This makes both SPACE
variations a better choice than round robin.

Both cSPACE and SPACE are also consistent in the curric-
ula they find. We measured this by comparing the frequency
with which each instance was used in the training set com-
pared to the weighted frequency which gives higher rank
to instances chosen at earlier iterations (1 for the instance
chosen first down to 1

|I| for the instance chosen last). For
cSPACE, both the frequency and weighted frequency stayed
the same while for SPACE only the four least used instances
differed in order between the two.

We also compared the mean instance distance between cur-
riculum iterations to see which method allows for smoother
transitions between tasks. Smooth transitions correlate to a
handcrafted curriculum where instances are close together
in the context space, making the curriculum easier to learn
from a human perspective. SPACE moves the instance
set around 4.7% each curriculum iteration while cSPACE
moves by around 5.6%. The maximum induced change is
10.1% for SPACE and 13.3% for cSPACE approach.

As we can see from these comparisons, using the informa-
tion contained in an agent’s value function to construct a cur-
riculum is very similar to using the context space distance. It
needs to be said, however, that in PointMass the context re-
flects the environment dynamics in a very direct way, being
made up of the x- and y-positions of the goal to reach and
the friction coefficient. Therefore we would expect cSPACE
to perform very well on such environments. The fact that
the default SPACE setting performs similarly indicates that
the value function contains the information necessary to

SPaCE

Table 1: Mean reward ± standard deviation for different
hyperparameter values on PointMass after 106 steps.

η

κ 5% 10% 20% 40%

1 5.1± 0.7 4.8± 1.2 4.7± 1.2 5.2± 0.7
4 5.5± 0.5 5.2± 0.7 4.3± 1.2 4.4± 1.0
16 4.6± 1.1 3.7± 1.1 5.1± 1.2 4.8± 1.0
32 4.5± 1.1 4.6± 1.1 4.7± 1.3 5.0± 1.2

order instances into a curriculum of similar quality. As not
all environments may have such simple changes between
instances, we expect that cSPACE has limitations on those
kinds of environments while we can expect the value-based
SPACE variation to continue constructing high quality cur-
ricula even in that case.

5.7. How Robust is SPACE wrt its Hyperparameters?

SPACE comes with two hyperparameters, the performance
threshold for curriculum interactions η and the instance in-
crement κ. These hyperparameters interact with each other
to make SPACE comparatively stable across different hy-
perparameter values (as seen in Figure 1).

By varying η for a given value of κ, we alter the degree of
stability the agent’s value estimates have to reach between
training episodes. Depending on the problem at hand, the
value estimates may never be perfectly stable, therefore
a very low value for η may prevent the training set from
expanding. On the other hand, a very large value will move
SPACE closer to round robin. Thus we view η as the more
important hyperparameter of the two.

Our study shows very little performance differences for dif-
ferent values of κ and η. In part, this is because PointMass
instances are not too difficult in the mean, therefore adding
many at once does not heavily disturb learning. Larger per-
formance thresholds η are not an issue for this reason. A
value of 5% for η seems quite low, but as the instances are
relatively easy, the agent can still converge enough very
quickly. Different values for κ show similar results here. We
expect this hyperparameter to be more important in very
diverse settings with large gaps between instances. We can
see the effect if we multiply the size of our training set in-
stead of adding instances (see Figure 9). In this case, there
is a visible slowdown, supporting that κ has a big influence
on training performance.

From these results, we believe that it is reasonable to rec-
ommend keeping κ = 1 for most applications. It can yield
more fine-grained curricula which will be important on di-
verse instance sets and will likely only impact training on
very large instance sets. For η, using a low value such as 5%

Figure 9: Mean reward per episode on a test set with fast
rising instance set size (i.e. varying κ) and fixed η = 10%.

Figure 10: Total undiscounted reward of VDS and its RR
baseline on AntGoal.

should ensure that the agent will not be overwhelmed with
new instances if it takes more than one curriculum iteration
to learn from the current training set.

5.8. Can Goal-Directed RL Achieve Similar Results?

Goal-directed RL and contextual RL are closely related
flavours of RL. The main difference between the two is
that in goal-directed RL, the context is restricted to only
contain information about a desired goal-location. Thereby
the context indicates a (final) state in which the agent should
reach. Policies learning with goals as context information
thus can learn the value of executing an action in a certain
state for reaching the desired goal. Crucially however, in
this setting transition dynamics are assumed to never change
for different contexts.

Contextual RL subsumes goal-directed RL by also allow-
ing the environment dynamics for the same goal to vary.
Both environments we evaluate on exemplify this. In con-
textual PointMass, we specify both a goal and the friction
coefficient to describe an instance. Even if the goal is kept
the same, however, the friction is a deciding factor in the
amount of force that is necessary to reach the goal correctly.
So while the force direction is the same for instances with
the same goal, the required amount of force depends on the
friction and therefore the agent needs both information to
learn to generalize across different instances.

SPaCE

On AntGoal, we can see how this looks in practice. VDS
(Zhang et al., 2020) is a recent state-of-the-art method
for goal-directed curriculum construction based on HER
(Andrychowicz et al., 2017). As a result, it can take only
the ant’s goal into consideration when selecting the next
instance and crucially misses that in different instances the
ant has different defects in some of its joints. As a result,
the method conflates all instances with the same goals and
fails to actually learn how to act on any of them.

We used the implementation and baseline of Zhang et al.
(2020) to demonstrate that while goal-directed curriculum
generation approaches seem similar to SPaCE, our prob-
lem setting is out of scope for them (see Figure 10). Their
RR baseline has a different learning curve as ours as the
algorithm used is different, but it clearly is able to improve
over time. As VDS uses goals to describe the necessary
behaviour, it cannot do the same. Therefore, curriculum
learning methods for contextual RL and goal-directed RL
have different scopes and cannot be compared fairly in the
contextual RL setting.

6. Limitations
Even though SPACE performed very well on the bench-
marks used in this paper, there are several limitations of
SPACE to be considered. The first one is that the problem
and the instance set both need to support curriculum learn-
ing to some degree. For the problem itself this means that
the policy to solve it is influenced by context to a large de-
gree, but that there is an underlying structure that can be
exploited using a curriculum. The instance set then needs
to be large enough to actually give SPACE the opportunity
to do so. In settings with too little or very large amounts of
instances, SPACE becomes less efficient (see Appendix D).

Furthermore, if the instance set is very homogeneous, simi-
lar to the specific instance SPDRL uses on PointMass (see
Appendix C), using different instances for training might not
make a difference. Conversely, if the instance set is hetero-
geneous, preliminary experiments showed that SPACE re-
quires a larger amount of instances to speed up the learning.
Thus not every problem is suited for curriculum learning.

Lastly, SPACE is constructed to work for discrete instance
spaces only, where the instance ordering is essential for
learning efficiency. We stress the fact that SPACE is de-
signed for use cases with only a few instance examples. In
settings with instance generators or a lot of domain knowl-
edge available, it is likely better to exploit them which
SPACE is not designed for.

7. Conclusion
Self-Paced Context Evaluation (SPACE) provides an adap-
tive curriculum learning method for problem settings con-
strained to a fixed set of training instances. Thereby we
facilitate generalization in practical applications of RL. We
demonstrated that the order of instances on which agents
learn their behaviour policies indeed is important and can
produce a better learning efficiency. In addition, SPACE
outperformed a simple round robin baseline as well as more
specialized curriculum learning methods requiring access to
unlimited instance generators to perform well. Finally we
evaluated the influence of SPACE’s own hyperparameters
and showed that they are robust on the chosen environments.

Future research could address how to derive performance
expectations for practical applications of RL with a limited
amount of instances with respect to the amount of informa-
tion available. Furthermore, we might be able to use value
estimation to further improve training efficiency for exam-
ple by clustering instances of similar difficulty and limiting
the amount of training on very easy ones to a minimum.
Another important factor for contextual RL in general is
catastrophic forgetting (see Appendix F), which is not yet
sufficiently understood, especially in the continuous context
spaces we applied SPACE to.

8. Acknowledgements
Theresa Eimer and Marius Lindauer acknowledge fund-
ing by the German Research Foundation (DFG) under LI
2801/4-1. All authors acknowledge funding by the Robert
Bosch GmbH.

References
Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong,

R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., and
Zaremba, W. Hindsight experience replay. In Guyon,
I., von Luxburg, U., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R. (eds.), Proceedings of
the 31st International Conference on Advances in Neural
Information Processing Systems (NeurIPS’17), pp. 5048–
5058, 2017.

Beaulieu, S., Frati, L., Miconi, T., Lehman, J., Stanley,
K. O., Clune, J., and Cheney, N. Learning to continually
learn. In ECAI 2020 - 24th European Conference on
Artificial Intelligence, 2020.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. Cur-
riculum learning. In Bottou, L. and Littman, M. (eds.),
Proceedings of the 26th International Conference on Ma-
chine Learning (ICML’09), pp. 41–48. Omnipress, 2009.

Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., and

SPaCE

Lindauer, M. Dynamic Algorithm Configuration: Foun-
dation of a New Meta-Algorithmic Framework. In Lang,
J., Giacomo, G. D., Dilkina, B., and Milano, M. (eds.),
Proceedings of the Twenty-fourth European Conference
on Artificial Intelligence (ECAI’20), pp. 427–434, June
2020.

Brazdil, P., Giraud-Carrier, C., Soares, C., and Vilalta, R.
Metalearning: Applications to Data Mining. Springer
Publishing Company, Incorporated, 1 edition, 2008.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Chan, M. gym-maze. https://github.com/
MattChanTK/gym-maze, 2019.

Chauhan, K. Cartpole dqn. https://github.com/
kapilnchauhan77/CartPole_DQN, 2019.

Coumans, E. and Bai, Y. Pybullet, a python module for
physics simulation for games, robotics and machine learn-
ing. http://pybullet.org, 2020.

da Silva, F. L., Costa, A. H. R., and Stone, P. Building
self-play curricula online by playing with expert agents
in adversarial games. In 8th Brazilian Conference on
Intelligent Systems, BRACIS ’19, pp. 479–484, 2019.

Dendorfer, P., Osep, A., and Leal-Taixé, L. Goal-GAN:
Multimodal trajectory prediction based on goal position
estimation. In Proceedings of the 15th Asian Conference
on Computer Vision (ACCV’20), 2020.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML ’17), volume 70, pp. 1126–1135, 2017.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and
Abbeel, P. Reverse curriculum generation for reinforce-
ment learning. In Proceedings of the 1st Conference
on Robot Learning (CoRL’17), volume 78, pp. 482–495,
2017.

Hallak, A., Castro, D. D., and Mannor, S. Contextual
markov decision processes. arXiv:1502.02259 [stat.ML],
2015.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A.,
Traore, R., Dhariwal, P., Hesse, C., Klimov, O., Nichol,
A., Plappert, M., Radford, A., Schulman, J., Sidor, S.,
and Wu, Y. Stable baselines. https://github.com/
hill-a/stable-baselines, 2018.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. Im-
itation learning: A survey of learning methods. ACM
Comput. Surv., 50(2):21:1–21:35, 2017.

Klink, P., D’Eramo, C., Peters, J., and Pajarinen, J. Self-
paced deep reinforcement learning. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Proceedings of the 33rd Conference on Neural Informa-
tion Processing Systems (NeurIPS’20), 2020.

Kumar, M. P., Packer, B., and Koller, D. Self-paced learn-
ing for latent variable models. In Lafferty, J., Williams,
C., Shawe-Taylor, J., Zemel, R., and Culotta, A. (eds.),
Proceedings of the 24th International Conference on
Advances in Neural Information Processing Systems
(NeurIPS’10), pp. 1189–1197, 2010.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In Proceedings of the
International Conference on Learning Representations
(ICLR’16), 2016. Published online: iclr.cc.

Matiisen, T., Oliver, A., Cohen, T., and Schulman,
J. Teacher-student curriculum learning. CoRR,
abs/1707.00183, 2017.

Modi, A., Jiang, N., Singh, S. P., and Tewari, A. Markov
decision processes with continuous side information. In
Algorithmic Learning Theory (ALT’18), volume 83, pp.
597–618, 2018.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M.,
Litwin, M., McGrew, B., Petron, A., Paino, A., Plap-
pert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N.,
Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba,
W., and Zhang, L. Solving rubik’s cube with a robot hand.
arXiv:1910.07113 [cs.LG], 2019.

Rice, J. The algorithm selection problem. Advances in
Computers, 15:65–118, 1976.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and
Abbeel, P. Trust region policy optimization. In Bach, F.
and Blei, D. (eds.), Proceedings of the 32nd International
Conference on Machine Learning (ICML’15), volume 37,
pp. 1889–1897. Omnipress, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv:1707.06347 [cs.LG], 2017.

Seo, Y., Lee, K., Gilaberte, I. C., Kurutach, T., Shin, J., and
Abbeel, P. Trajectory-wise multiple choice learning for
dynamics generalization in reinforcement learning. In
Proceedings of the 33rd Conference on Neural Informa-
tion Processing Systems (NeurIPS’20), 2020.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L.,
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneer-
shelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham,
J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,

https://github.com/MattChanTK/gym-maze
https://github.com/MattChanTK/gym-maze
https://github.com/kapilnchauhan77/CartPole_DQN
https://github.com/kapilnchauhan77/CartPole_DQN
http://pybullet.org
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
iclr.cc

SPaCE

M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. Mas-
tering the game of go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.

Speck, D., Biedenkapp, A., Hutter, F., Mattmüller, R., and
Lindauer, M. Learning heuristic selection with dynamic
algorithm configuration. In Workshop on Bridging the
Gap Between AI Planning and Reinforcement Learning
(PRL@ICAPS’20), October 2020.

Such, F. P., Rawal, A., Lehman, J., Stanley, K. O., and
Clune, J. Generative teaching networks: Accelerating
neural architecture search by learning to generate syn-
thetic training data. In III, H. D. and Singh, A. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning (ICML’20), volume 98. Proceedings of
Machine Learning Research, 2020.

Sukhbaatar, S., Lin, Z., Kostrikov, I., Synnaeve, G., Szlam,
A., and Fergus, R. Intrinsic motivation and automatic cur-
ricula via asymmetric self-play. In 6th International Con-
ference on Learning Representations (ICLR ’18), 2018.

Thomaz, A. L. and Breazeal, C. Reinforcement learning
with human teachers: Evidence of feedback and guidance
with implications for learning performance. In Proceed-
ings of the Twenty-first National Conference on Artificial
Intelligence (AAAI’06), pp. 1000–1006, 2006.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and
Abbeel, P. Domain randomization for transferring deep
neural networks from simulation to the real world. In
2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’17), pp. 23–30, 2017.

Turchetta, M., Kolobov, A., Shah, S., Krause, A., and Agar-
wal, A. Safe reinforcement learning via curriculum in-
duction. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information
Processing Systems 2020, (NeurIPS’20), 2020.

Vinyals, O., Babuschkin, I., Czarnecki, W., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka,
I., Huang, A., Sifre, L., Cai, T., Agapiou, J., Jaderberg,
M., Vezhnevets, A., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T., Gülçehre,
Ç., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in starcraft II using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

Wang, R., Lehman, J., Clune, J., and Stanley, K. O. POET:
open-ended coevolution of environments and their opti-
mized solutions. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO’19, 2019.

Zhang, Y., Abbeel, P., and Pinto, L. Automatic curricu-
lum learning through value disagreement. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.
(eds.), Proceedings of the 33rd Conference on Neural
Information Processing Systems (NeurIPS’20), 2020.

A. Instance Sampling
AntGoal We uniformly sampled 100 different goals at a
distance of at most 750 in both x- and y-direction for both
training and test set respectively.

BallCatching The distance and goal coordinates were
sampled uniformly for both training and test set. The dis-
tance ranged between 0.125 · π and 0.5 · π, the x-coordinate
between 0.6 and 1.1 and the y-coordinate between 0.75 and
4.0. Each instance set contains 100 instances.

PointMass For PointMass, we sampled two different in-
stance sets. First, we used the context bounds of [-4, 4]
for the goal position, [0.5, 8] for the goal width and [0, 4]
for friction to uniformly sample instances. The goal was to
cover the instance space as well as possible. Our second
instance set was sampled using the target distribution of
SPDRL, which are normal distributions for each context
component with means 2.5, 0.5 and 0 respectively as well
as standard deviations of 0.004, 0.00375, and 0.002.

B. Experiment Hardware &
Hyperparameters

Hardware All experiments with SPACE and the baseline
round robin agent were conducted on a slurm CPU cluster
(see Table 2). The upper memory limit for these experiments
was 1GB per run. The SPDRL experiments were replicated
on a slurm GPU cluster consisting of 6 nodes with eight
RTX 2080 Ti each. Here maximum memory was 10GB.
Slurm scripts for the experiments on PointMass and Ant
are provided in the supplementary material. Gridworld ex-
periments are every small and can therefore be found in a
jupyter notebook.

Machine no. CPU model cores RAM
1 Xeon E5-2670 16 188 GB
2 Xeon E5-2680 v3 24 251

3-6 Xeon E5-2690 v2 20 125 GB
7-10 Xeon Gold 5120 28 187

Table 2: CPU cluster used for training

CartPole We used a DQN implementation in the top-10
on the environment leaderboard to ensure fair performance
for round robin and SPACE agents (Chauhan, 2019). We did

SPaCE

not change any hyperparameters from that implementation
and used κ = 1 and η = 2.5% for all experiments.

Other benchmarks For both experiments we used stable
baselines version 2.9.0 (Hill et al., 2018) with TRPO for
PointMass and PPO2 for all other benchmarks. The policies
are encoded by an MLP in both cases, with two layers of
64 units for PPO. For PointMass, we used the default from
the SDPRL paper with 21 layers of 64 units each. The dis-
count factor was 0.95. The PPO2 specfic hyperparameters
included no gradient clipping, a GAE hyperparameter λ
value of 0.99 and an entropy coefficient of 0. For TRPO we
used again used the same hyperparameters as SPDRL with a
GAE hyperparameter λ of 0.99, a maximum KL-Divergence
of 0.004 and value function step size of around 0.24. Any
hyperparameters not mentioned were left at the stable base-
lines’ default values. The random seeds were used to seed
the environments with the corresponding seeding method.

C. Additional Comparison to SPDRL

Figure 11: Mean reward per episode on a test set of hard
instances with small goals and low friction.

In contrast to SPACE, SPDRL is designed to solve hard
instances. To this end, it samples harder and harder instances
over time. Therefore, we additionally study how SPACE,
round robin (RR) and SPDRL compare on hard instances
sampled from the SPDRL target distribution, see Figure 11.
Instances in this distribution typically have small goal sizes
and low friction, both of which contribute significantly to
an increased difficulty.

As in the original paper, SPDRL was allowed to sample as
many instances as needed from the distribution, whereas
SPACE and RR still only got access to a finite set of 100
instances. In this setting, agents trained either via SPACE
or RR exhibit a similar learning behaviour as on the space
covering instance set. For the first ∼ 200 000 steps both
agents outperform the agent trained via SPDRL; RR anyway
focuses on the whole target distribution from the beginnig
and SPACE is more free in the way it can select instances
with fast training progress. During this time, SPDRL trains
the agents on some easy instances, while gradually adapting
the instance distribution to focus on ever more difficult tasks.

Note that the level of difficulty is not determined solely by
the agent being trained via SPDRL, as done in SPACE, but
is determined by an expert beforehand.

Once the agent trained via SPDRL is capable of homing in
on the difficult instances it outperforms the other agents, as
it can exploit its domain knowledge to sample ever more
similarly difficult instances, while SPACE and RR are stuck
with the limited number of example instances and still try to
cover the entire instance space. To achieve this feat, SPDRL
requires substantial expert knowledge about which instances
to focus on. In essence, the agent trained via SPDRL in the
end is only capable of solving a few hard instances with
very little variation and will fail to perform well on instances
that are not narrowly aligned with the assumed instance
distribution.

To be able to know which instances SPDRL should focus on,
additional time and effort have to be spent to identify how to
quantify difficulty for SPDRL. This effort is not reflected in
Figure 11 and would move the curve of SPDRL even further
to the right.

D. Does the Training Set Size Matter?
To answer this question, we used SPACE to train agents
with varying instance set sizes. Figure 12 shows the test
performance for differently sized instance sets. Intuitively,
one might think that performance should improve with more
instances as they cover the instance space better. Indeed, the
results for training sets with only 25 and 50 instances are
visibly worse than for larger sets. On the remaining instance
sets, the agent show very similar performance, however.
Note that the performance seems to increase from an in-
stance set size of 100 to 200, but slightly drops again after-
wards. There are multiple factors potentially contributing to
this effect.

Figure 12: Mean reward per episode on test set for different
sized instance sets.

The first is that the agent cannot incorporate any more infor-
mation from the additional instances, maybe due to limited
network capacity or due to the fact that smaller instance
sets already cover the space adequately. Furthermore, as we
only extend the instance set by one instance at a time, there

SPaCE

are more learning steps between curriculum iterations the
larger the instance set is, thereby slowing the process down.
Especially an agent trained on 1 600 instances will suffer
from this.

Lastly, SPACE improves upon the RR baseline by order-
ing training instances and thus smoothing the progression
through the instance space. Larger instance sets offer an in-
herently smoother representation of the instance distribution,
therefore diminishing the effect of SPACE. In real-world
application settings, we will rarely have access to such large
numbers of instances and therefore, it is unlikely that such di-
minishing performance effects can be observed. This shows
that the strength of our method comes to full effect when
learning on a sparse representation of our instance space.

E. Comparison of SPACE Curricula
To give some insight into which curricula SPACE found on
our benchmark environments, we compare how they behave
across random seeds and how they compare to cSPACE
curricula. We use Kendall’s tau to determine how similar
the order in which the instances are added to the training set
is.

On PointMass, SPACE finds a curriculum that stay very
consistent across all random seeds, showing a correlation
of at least 98.9% each to the mean curriculum. The same
is true for the cSPACE variation, where the correlation
is above 93.8% per seed. Interestingly, these curricula are
uncorrelated with a correlation of −0.04. In both we cannot
make out a human readable progression in a single context
feature (see Figure 13), their curricula do not correspond
to any manual instance ordering. As both perform well
nonetheless, we can see that learning can be improved by
multiple different curricula on this environment.

SPACE and cSPACE produce almost equally unrelated cur-
ricula on AntGoal (correlation of 0.07), but while the cur-
riculum stays as consistent across seeds for cSPACE, the
same cannot be said for SPACE. Here the correlation to
the average curriculum ranges from 14.1% to 52.4%. The
correlations between the seed curricula fall into the same
range, confirming that the SPACE agent trains on a very
different curriculum for each seed. CartPole shows a sim-
ilar behaviour, the curriculum varying quite a bit between
seeds. Therefore we can conclude that SPACE does not
find a singular curriculum, but depends on the initialization
of environment and model. This is in contrast to cSPACE
which stays relatively static due to the context features being
constant.

These comparisons suggest that we neither SPACE nor
cSPACE finds an optimal curriculum for PointMass,
AntGoal or CartPole. It seems, however, that we do not
need an optimal curriculum for training at all, as even the 10

Figure 13: Context feature progression during training for
SPACE curriculum (top) and cSPACE curriculum (bottom).

very different curricula SPACE finds on AntGoal perform
vastly superior to the round robin default. Curriculum Learn-
ing should thus focus on reliably and quickly finding good
curricula in addition to finding qualitatively better ones.

F. The Influence of Catastrophic Forgetting
When training across multiple instances, forgetting already
learnt policies on a subset of instances is a concern (Beaulieu
et al., 2020). We analyze how often SPACE and RR agents
forget policy components in our PointMass experiments by
observing performance development during training. We
selected PointMass for this analysis as here policies that
are diverse both in how they react to different goal settings
and different friction levels are required. That means the
policy has to completely change between the extremes of
the context which is not required of our other benchmarks
where underlying mechanics, e.g. walking for the Ant, stay
very similar.

During the training on PointMass, we observed 8 out of 100
instances for which the performance decays after an initial
improvement. We would expect the performance to stay at
least constant if no forgetting takes place, so the agent likely
forgets parts of the policy for these instances in favor of
improving on others. The effect is about the same size for
round robin agents where we can observe the same for 6 out
of 100 instances.

SPaCE

Another reason for attributing this performance decay to for-
getting is that on a purely goal-based PointMass variation,
the number of instances on which we can observe this effect
is slightly smaller (only 4 instances), though not signifi-
cantly so. All performance decay happens after learning has
stagnated on all instances, however. In this easier, purely
goal-based setting we could therefore stop training early
and would avoid performance decay entirely. This points
towards the added complexity of the setting being harder to
capture for our agents.

While the effects on both SPACE and RR agents are not
very large in our experiments, catastrophic forgetting is
therefore certainly important in the field of contextual RL.
Future work could on integrate SPACE with existing efforts
to reduce this effect like ANML (Beaulieu et al., 2020). A
specific aspect of this research that would need to be ex-
tended is preventing forgetting in continuous context spaces
in addition to the existing successes in discrete ones.

	1 Introduction
	2 Related Work
	3 Contextual Reinforcement Learning
	4 Self-Paced Context Evaluation
	4.1 Exemplary Application of SPaCE
	4.2 Convergence of SPaCE

	5 Experiments
	5.1 Setup
	5.2 Baselines
	5.3 Does the Instance Order Matter?
	5.4 Comparing SPaCE and SPDRL
	5.5 How Well does SPaCE Handle Complex Contexts?
	5.6 Can SPaCE Be Applied Without a Value Function?
	5.7 How Robust is SPaCE wrt its Hyperparameters?
	5.8 Can Goal-Directed RL Achieve Similar Results?

	6 Limitations
	7 Conclusion
	8 Acknowledgements
	A Instance Sampling
	B Experiment Hardware & Hyperparameters
	C Additional Comparison to SPDRL
	D Does the Training Set Size Matter?
	E Comparison of SPaCE Curricula
	F The Influence of Catastrophic Forgetting

