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DAC - Dynamic Algorithm Configuration

Theresa Eimer, 29.07.2022
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What is DAC?

• DAC is an algorithm configuration paradigm

• Task: find the best hyperparameter value for each instance at each timestep

• Goal: increase algorithm performance and efficiency

• Generalization of Algorithm Configuration (AC) and Per-Instance Algorithm 
Configuration (PIAC)

• Can be modelled as a sequential decision making problem

Theresa Eimer, 29.07.2022
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Why Configure Dynamically?

AC tools are already good at finding suitable hyperparameter configurations, But:

• In many algorithms, the role of hyperparameters shift during training
Example: exploration hyperparameters in RL

• Optimal hyperparameter values can correspond to the algorithm's progress
Example: learning rate in ML algorithms

• Both of these can vary between instances
Example: CNN on MNIST or on ImageNet

Theresa Eimer, 29.07.2022
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Dynamic Configuration: Triathlons

• Three disciplines, each with its own equipment

• Goal: fastest time possible

• Disciplines: Swimming, Running, Biking

• Equipment:👟🚲🥽

Theresa Eimer, 29.07.2022
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Dynamic Configuration: Triathlons

• While their order is fixed, the length of each discipline can vary

• Thus: there's no one-size-fits all solutions

• Different triathlons can only be solved by accounting for their length

• Each triathlon length in this example is an instance of a triathlon

• We can also imagine future instances with different orders of the disciplines or 
even repeating disciplines

Theresa Eimer, 29.07.2022
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Dynamic Configuration in Machine Learning

• Initially: high learning rate to efficiently traverse loss landscape

• Once minimum is found: decrease learning rate to continue descending

• Possibly helpful: learning rate spikes during training to find global minimum

TODO: make plots for this

Theresa Eimer, 29.07.2022
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Overview

1. What is DAC?

2. Example: AC solvers for DAC

3. Example: DAC by Reinforcement Learning

4. The State of DAC & Open Questions

Theresa Eimer, 29.07.2022
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DAC Defined

Given:

• An algorithm A with configuration space Θ

• A distribution D over a target problem instances with domain I
• A space of dynamic configuration policies Π with π: S × I → Θ

• A cost metric c: Π × I → R

Find π* ∈ argminπ∈Π Ei~D c(π, i) [Adriaensen et al. 2022]
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DAC In Practice

Theresa Eimer, 29.07.2022
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AC Solvers for DAC

• DAC can be solved using classical AC solvers

• Idea: search for a hyperparameter per pre-set time interval

• Downside: tradeoff between number of intervals and search space size

• Upside: there are fairly sophisticated AC solvers that perform very well on many 
different tasks

Theresa Eimer, 29.07.2022



16

Example: SMAC for Dynamic Learning Rates

• Setting: a set of different CNNs on MNIST
and CIFAR10

• Task: control the learning rate to minimize
prediction error

• SMAC [Lindauer et al. 2022] with Bayesian 
Optimization and Hyperband is used

• DAC outperforms the best static learning 
rate in almost all cases 
[Adriaensen et al. 2022]

Theresa Eimer, 29.07.2022

Figure: SMAC (dark blue solid) and static LR values 
on different optimizers
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DAC by Reinforcement Learning

• As DAC can be modelled as a sequential decision problem, we can solve it using 
Reinforcement Learning

• Each action the agent takes changes the hyperparameter

• Downside: RL is often unreliable, scaling to multiple hyperparameters is hard

• Upside: search space is independent of the number of hyperparameter changes, 
generalization can be easier than with classical AC solvers

Theresa Eimer, 29.07.2022
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Example: GPS for CMA-ES

• Setting: CMA-ES of different 
functions

• Task: control the step size to 
minimize the current function

• RL agent learns from dynamic
standard heuristic using GPS 
[Levine & Koltun 2013]

• While DAC needs training time,
it beats even the static oracle 
[Adriaensen et al. 2022]

Theresa Eimer, 29.07.2022

Figure: DAC and static configuration variants on CMA-ES
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State of the DAC

• Several successful applications of DAC

• Dedicated benchmark library from different domains [Eimer et al. 2020]

• On-going research into better solutions methods

• Collaborative efforts to expand both available problems and solutions

• What's next?

Prof. Dr. Max Mustermann Titel, 10.03.2008
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The DAC4AutoML Competition Setting

• Competition for the AutoML-Conf 2022

• Two tracks: DAC for ML and DAC for RL

• Motivation: create a problem setting that reflects interesting ML and RL 
configuration problems

• Focus on generalization across several different instance options

• Task: beat both static baselines and well-known dynamic heuristics

Theresa Eimer, 29.07.2022
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The DAC4AutoML Competition Setting - DAC4SGD

• Image Classification on different image datasets, hyperparameter configurations 
and architectures

• Task: dynamic learning rate control across variations

• Test entropy loss is used for scoring

• Baselines: Static learning rate, cosine annealing [Loshchilov & Hutter 2017], reduce 
learning rate on plateau [Pytorch; Paszke et al. 2019]

• Results: two participants beat all baselines, all beat the static one

Theresa Eimer, 29.07.2022
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The DAC4AutoML Competition Setting - DAC4RL

• Training an RL agent each for 5 different environments with variations

• Task: controlling the algorithm and all its hyperparameters

• Rank across environments is used for scoring

• Baselines: SB3 Zoo optimized hyperparameters [Raffin et al. 2021], PB2 on the 
competition setting [Parker-Holder et al. 2020]

• Results: one participant could beat all baselines, setting overall is hard

Theresa Eimer, 29.07.2022
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Current Open Questions

• How can we scale to more hyperparameters?

• Is there a best DAC method? Can we combine existing ones?

• What are ways to bootstrap from existing solutions?

• How far can we push generalization in DAC for ML?

Theresa Eimer, 29.07.2022
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If You Want To Know More

• Find all our research on DAC on automl.org

• Read our recent overview paper on DAC

• Get started working on DAC with DACBench

• Get in touch!

Theresa Eimer, 29.07.2022

https://www.automl.org/automated-algorithm-design/dac/
https://arxiv.org/pdf/2205.13881.pdf
https://github.com/automl/DACBench
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vector-image/27110.html

[iii] Triathlon track: https://www.dreamstime.com/running-track-vector-stadium-
pattern-illustration-background-image151507060

Theresa Eimer, 29.07.2022


